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Abstract

This works focuses on evaluating whether the neural network transformer archi-
tecture can be learned in a more biologically plausible manner than is currently
done using backpropagation. We identify three main problems with the biological
plausibility of backpropagation-based learning, the weight transport problem, the
global loss problem and the asymmetry problem, and prescribe methods aimed at
addressing these issues. We show how these methods can be extended to deep
and complex networks like transformers and we evaluate their effectiveness as
a function of network depth. Our experiments demonstrate learning for large
neural networks in natural language processing, which is a novel application of
backpropagation free methods.

1 Introduction

Deep Neural Network (DNN) approaches to machine translation and speech recognition have been
shown to be very effective. While DNNs have taken inspiration from the brain, they are incompatible
with current understandings in neuroscience and biology. Future advances in deep learning could
strongly benefit from biologically plausible learning algorithms [3].

We will begin by providing an overview of the current state of BP-free learning methods. In this
analysis we cover Feedback Alignment [7], Difference Target Propagation [6], Local Representation
Alignment [8], as well as more recent advances such as [13], [2], [5], [9], [1]. After that we will
offer a comparative explanatory overview of the most promising biologically realistic algorithms for
learning in deep neural networks. We will finally run experiments which go beyond brain-inspired
BP-free learning in simple shallow networks, and to the best of our knowledge, this is the first instance
of BP-free learning for large neural networks for natural language processing.

2 The Credit Assignment Problem

The credit assignment problem centers on the notion of how much “blame” or “credit” an individual
neuron should receive for a specific output of a network. Once this is known, the weights can
be adjusted so that the network performs better in the future. A common approach to the credit
assignment problem is to change the weights using the gradient of the objective function. In artificial
neural networks, the most prominent method is backpropagation which computes the credit for each
synapse. The process begins at the outermost layer of a network and recursively calculates gradients
using the chain rule [10]. Backpropagation is very powerful but it mandates that neurons dispatch
between one another a large number of synaptic weight information. This forward and backward
transport of weights is biologically implausible as synapses in the brain operate unidirectionally.
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3 Implausibility of Backpropagation

The standard deep learning network has information going in the forward direction (forward path)
from the input to the output yl of a given layer l. On its way from input to output, the signal
is multiplied by a matrix of synaptic weights Wl. There is also a backwards path which then
sends errors signals el in the backwards direction according to the error-backpropagation rule. The
aforementioned weight matrix is transposed, WT

l , in the backwards path as the error signals travel
in reverse. While in this artificial neural network construct we have the synaptic weight matrix,
Wl, appear in both directions, the synapses in the forward and backwards directions are completely
separate and do not communicate in the brain. This is known as the weight transport problem and
it makes the current deep learning framework involving backpropagation biologically implausible,
since biological neurons do not provide weight transport or bidirectional synapses [7]. There are
however a number of additional arguments against the plausibility of BP. In particular [6] argues
that biological neurons are not likely to be transmitting gradients of single global loss, as occurs in
backpropagation, but they are more likely to be transmitting targets that earlier layers will attempt to
adapt to. We dub this issue the global loss problem. Finally, as is argued by [8], it seems likely that
biological forward and backward neurons are making the same type of computations which is not
the case in backpropagation. Indeed, BP models forward neurons as linear functions followed by
component-wise nonlinearities. Meanwhile it models backward neurons as linear functions followed
by products with the pointwise derivatives of the activation functions in the forward pass. We dub
this issue the asymmetry problem. For illustration, consider an MLP with a single hidden layer,
shown in Figure 2. Let an example be given as (z0, y2), where z0 is the input and y2 is the expected
label. h1 = W1z0 + b1, z1 = φ1(h1) = ReLU(h1), h2 = W2z1 + b2, z2 = φ2(h2) =
softmax(h2), L2 = H(y2, z2) = −y>2 log z2

Note that z2 is a probability distribution and the loss L2 is the cross-entropy loss between z2 and y2,
where y2 is a one-hot vector indicating the expected label. The gradients of the parameters with the
respect to the global loss L2 are then computed by the computational graph shown in Figure 3 as
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4 Solving the Weight Transport Problem

We examine three algorithms which do not exhibit the weight transport problem: Feedback Alignment
(FA), Weight Mirror (WM) and Kolen-Pollack (KP). These algorithms all introduce a new set of
parameters to be used while computing training signals, as shown for example in Figure 4. The
additional set of weights E2 is then incentivized to be similar to W>2 during training. This property
causes learning to mimic backpropagation and thus can achieve similar results to backpropagation
even in deep networks.

4.1 Feedback Alignment

Feedback Alignment takes the radical approach of setting the parameters of the backward neurons
to be a fixed random matrix. So the matrix W>2 is replaced by a fixed random matrix of weights B.
It bypasses the transport of weight information in the backward direction [7]. Instead, it involves
multiplying the error of a network with random synaptic weights. The forward weights align to the
fixed random weights to send appropriate learning signals to inner layers of the network. Surprisingly,
this is found to work well for MLPs when the number of layers is limited. In our experiments we
found that Feedback Alignment works better than chance up to two transfomer layers, but fails
to converge entirely for any deeper networks. Notably, while Feedback Alignment was shown to
perform well in shallow networks, it obtains disappointing results when compared to BP in deep
neural networks [7].

4.2 Weight Mirror

Weight Mirror is a neural circuit that is able to incrementally tweak the initially random matrix of
synaptic weights, B, so that it ultimately becomes equivalent to the transpose of W without the
transport of weights information. So it is said that B mirrors WT . The networks alternates between
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two modes: engaged mode and mirror mode. In the engaged mode it takes in inputs and adjusts the
forward weights. This is done by the cross-projections sending across feedback signals to forward
neurons. In the mirror mode, forward neurons fire noisily, and forward cells drive feedback cells so
that δl = yl and δl+1 = yl+1. This is done by the Hebbian learning rule ∆El+1 = ηδlδ

>
l+1 − λEl+1,

where δ are the signals in the feedback path. In the example shown in Figure 4, the weight mirror
algorithm modifies matrix E2 with the update ∆E2 = ηz1z

>
2 − λE2, and the reason this works is

essentially that E[z1z
>
2 ] = E[z1φ2(W2z1 + b2)>] ≈ αW>2 .

4.3 Kolen-Pollack

In the Kolen-Pollack algorithm instead of having matrices of weightsW andB we consider individual
synapses w and b. This is because in the brain, changes to different synapses are calculated within
the synapses themselves. This algorithm allows for learning without transporting weights or weight
changes. The central idea is that the only variables transmitted between neurons are vectors yl and
δl+1, and each synapse calculates its own adjustments locally [1]. In essence, unlike in the weight
mirror, here there is a single mode of operation. Feedback signals δ are conveyed to forward path
neurons so that they can adjust forward weights w using learning rule: ∆wl+1 = −ηwδl+1y

T
l −

λwl+1. Also forward signals y are conveyed to feedback cells so that they can adjust feedback
weights b using learning rule: ∆bl+1 = −ηwylδ

T
l+1 − λbl+1 [1]. Synapses in the feedback path

adjust themselves based on their own inputs and individual neuron-specific teaching signals from the
forward path. At each time step, the individual synapses go through the same adjustments and have
the same weight-decay factor λ. In the example shown in Figure 4, this results in the simple update
rule: ∆E2 = −ηz1δ>2 − λE2.

5 Solving the Global Loss Problem: Target Propagation

The global loss problem is frequently tackled by defining local losses that only adjacent layers are
responsible to minimize. An approach which we elaborate on below stresses the importance of target
value rather than a loss gradient. It suggests computing a good target which essentially provides a
layer-local training criterion which can then be defined to update each layer separately. Figure 5
illustrates how local targets are computed for a simple two-layer MLP. In Target Propagation the
target y1 is computed as: y1 = φ̄2(E2z2), while in Difference Target Propagation it is computed as:
y1 = z1 + (φ̄2(E2y2)− φ̄2(E2z2)). In both cases the local losses are: L1 = 1

2 ||y1− z1||
2, Linv

2 =
1
2 ||φ̄2(E2z2 + ε)− (y1 + ε)||2, ε ∼ N (0, σ). The central idea is to compute at each layer targets as
opposed to that of gradients in traditional backpropagation. In Difference Target Propagation (DTP),
the computation of the local target is corrected in an attempt to stabilize training [3]. The correction
consists in using the backward mapping to compute the displacement of the current state as opposed
to the target directly.

6 Solving the Asymmetry Problem: LRA

Although the asymmetry problem in backpropagation seems quite evident, we found that only the
LRA algorithm provides a solution to it, while also generating local targets and avoiding weight
transport. Local Representation Alignment (LRA) is also a biological motivated algorithm [8].
Notably, its target computation and error unit mechanism is agnostic to underlying feedforward model
so it allows for extensions to models such as residual networks and other more exotic architectures.
The LRA algorithm centers around the general process of coordinated local learning rules. Computing
targets with these kinds of rules should not require an actual pathway, as in back-propagation, and
instead make use of top-down and bottom-up signals to generate targets. LRA has 2 parts. Part 1
involves computing error units and targets, and part 2 involves computing weight updates. At any
given layer zl, we calculate the target for the layer below zl−1 by multiplying the error unit values at
l by a set of synaptic error weights El. This is then subtracted from the initially found pre-activation
of the layer below hl−1. Once the targets for each layer have been found, we can then use the local
loss Ll(yl, zl) to compute updates to the weights Wl and its corresponding error weights El.
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7 Application to Transformers

Transformers were first introduced by [11] and were used to obtain dramatic improvements in a
number of NLP tasks in [4]. We could find no existing work applying any backpropagation free
method to transformers. The architecture of transformers is rather complex, however it does fit the
model of a sequence of linear transformations of the input data, each followed by a fixed non-linearity.
The version of [4] in particular is a stack L layers, each of the form:

z4l+l = self-attention

([
WK

WQ

WV

]
z4l +

[
bK
bQ
bV

])
, z4l+2 = layer-norm(dropout(Wnz4l+1 + bn) + z1),

z4l+3 = GELU(Wiz4l+2 + bi), z4l+4 = layer-norm(dropout(Woz4l+3 + bo) + z4l+2), . . .

where l is the layer index in 0, . . . , L− 1. Because each layer of a transformer can be expressed in
this “MLP” form, we are able to apply the BP-free algorithms described earlier as if a transformer
was a simple MLP, with the only caveat that some of the non-linearities are not component-wise.

7.1 Experiments: MNLI

MNLI (Multi-Genre Natural Language Inference) is a large-scale, crowdsourced entailment classifi-
cation task [12] with 433k sentences pairs. Given a sentence pair, the model is asked to determine
whether the first sentence entails the second, whether it contradicts the second, or neither. Since there
are only three choices per example, picking a label randomly will give an accuracy of about 33%.

7.2 Results

Our experimental results are shown in Figure 1. We trained a transformer from scratch with no
pretraining for 1 epoch on all of the MNLI training set and then evaluate on the MNLI development
set. We found that the Kolen-Pollack algorithm indeed tracks the performance of backpropagation
closely, regardless of the depth for transformers, showing that backpropagation free learning is indeed
quite achievable even in deep complex networks and with realistic NLP tasks.

Figure 1: Classification accuracy on the MNLI task for transformers with different number of layers,
for different learning algorithms.

8 Conclusion

Deep neural networks have had a tremendous impact on the advancement of language processing
and computer vision and they are the basis of the current rise of AI technologies. This work
contributes to the long-term quest of developing a biologically plausible ANN learning mechanism
which more closely resembles learning in the brain. We provide a comparative study of promising
biologically plausible algorithms for learning which nearly match the power of backpropagation, and
we demonstrate learning for large neural networks in natural language processing, which is a novel
application of backpropagation free methods.
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z0

W1 b1

h1 z1

W2 b2

h2 z2 L2

y2

Figure 2: A simple two-layer MLP, expressed in computation graph notation. Wi and bi are learnable
parameters, z0 is the model’s input, hi and zi are preactivations and postactivations respectively, y2
is the expected label expressed as a one-hot vector, z2 is a probability distribution over output labels,
L2 is the cross entropy H(y2, z2).

z0

W1 b1

h1 z1

W2 b2

h2 z2 L2

y2e2δ2e1δ1

Figure 3: Computational graph for backpropagation for a two-layer MLP. δi and ei are the derivatives
of the global loss L2 with respect to the preactivations and the postactivations of layer i respectively.
The fact that W2 is needed to compute e2 exemplifies the weight transport problem. The fact that
only one loss is defined for the entire network is the global loss problem. The fact that δi and ei are
computed in a completely different way compared to hi and zi is the asymmetry problem.

z0

W1 b1

h1 z1

W2 b2

h2 z2 L2

y2e2δ2e1δ1

E2

Figure 4: A solution to the weight transport problem in a two-layer MLP, in the Feedback Align-
mnet, Weight Mirror and Kolen Pollack algorithms introduce an additional set of weights E2 and
then incentivize E2 to be similar to W>2 during training. This property causes learning to mimic
backpropagation and thus can achieve similar results to backpropagation even in deep networks.

z0

W1 b1

h1 z1

W2 b2

h2 z2

L2y2y1

E2

Figure 5: For a two-layer MLP the additional target y1 is constructed and some discrepancy between
z1 and y1 is utilized as local loss.
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Figure 6: A solution to the asymmetry problem is proposed in the Local Representation Alignment
algorithm, where a linear layer parametrized by E2 is used to predict the preactivation diaplacement
on h1 and then same linearity as in the forward neurons is used to compute the target y1.
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